Mechanism for Cell Separation Based on Size and Deformability Using Microfluidic Ratchets

نویسنده

  • S. M. McFaul
چکیده

We present a mechanism for separating cells based on size and deformability using microfluidic ratchets created using micrometer-scale funnel constrictions. The force required to deform individual cells through such constrictions is directionally asymmetric, enabling rectified transport from oscillatory flow of the bulk fluid. Combining ratcheting with simple filtration enables cell separation based on size and deformability. Based on this concept, we developed a microfluidic device using a 2D matrix of funnel constrictions. We demonstrate highly selective separation of two cell types while retaining viability, study the effect of oscillation flow pressure, and confirm the irreversible nature of the ratcheting process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell separation based on size and deformability using microfluidic funnel ratchets.

The separation of biological cells by filtration through microstructured constrictions is limited by unpredictable variations of the filter hydrodynamic resistance as cells accumulate in the microstructure. Applying a reverse flow to unclog the filter will undo the separation and reduce filter selectivity because of the reversibility of low-Reynolds number flow. We introduce a microfluidic stru...

متن کامل

Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechani...

متن کامل

Deformability and size-based cancer cell separation using an integrated microfluidic device.

Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell ...

متن کامل

Deformability-based cell classification and enrichment using inertial microfluidics.

The ability to detect and isolate rare target cells from heterogeneous samples is in high demand in cell biology research, immunology, tissue engineering and medicine. Techniques allowing label-free cell enrichment or detection are especially important to reduce the complexity and costs towards clinical applications. Single-cell deformability has recently been recognized as a unique label-free ...

متن کامل

Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR‐Cas9 System

Herein we report a CRISPR-Cas9-mediated loss-of-function kinase screen for cancer cell deformability and invasive potential in a high-throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011